2020

MATHEMATICS

[HONOURS]

Paper: VIII

Full Marks: 50

Time: 2 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations and Symbols have their usual meanings.

1. Answer any **five** questions:

 $2 \times 5 = 10$

- a) Define absolute error and relative percentage error of a number.
- b) Define the degree of precision of a quadrature formula. What is the degree of precision of the Trapezoidal rule?
- c) Establish $\Delta = E.\nabla = \nabla.E$ where Δ -forward difference operator, E-shift operator and ∇ -backward difference operator.

- d) Write down the condition of convergence of Newton-Raphson method for finding the real root of the equation f(x)=0.
- e) Write down the limitations of Taylor's series method in solving a first-order differential equation with given initial condition.
- f) Write down Fortran expression of the following $g = \frac{e^{-x^2} \sin^2(x + |x|)}{\cos(x + \sqrt{y})} + x \log_e y$.
- Explain with an example and show that the expressions $\frac{(I+J)}{K}$ and $\frac{I}{K} + \frac{J}{K}$ do not produce the same result.
- h) Find the binary equivalent of $(18)_{10}$ and $(13.05)_{10}$.
- 2. Answer any **three** questions: $8 \times 3 = 24$
 - a) i) Establish Lagrange's interpolation formula. Mention one advantage and one disadvantage of using this formula.
 - ii) Given f(0)=3, f(1)=12, f(2)=81, f(3)=200, f(4)=100 and f(5)=8. Find $\Delta^5 f(0)$. (4+2)+2

- b) i) Deduce Simpson's one-third formula from Newton-Cote's quadrature formula for numerical integration of f(x) in [a, b]. Explain geometrically why this rule is called a parabolic type.
 - ii) If T_1 and T_2 denote the trapezoidal approximations to $I = \int_a^b f(x) dx$ with single interval and double subintervals respectively then show that $I = T_2 + \frac{1}{3}(T_2 T_1). \tag{3+2} + 3$
- c) i) Explain the Newton-Raphson method to determine approximately one real root of the equation f(x)=0. Write down the iteration formula for finding the q-th root of a positive real number R.
 - ii) Write down the geometrical interpretation of Regula-Falsi method for finding a real root of the equation f(x)=0. (3+2)+3

- d) i) Write down the Gauss-Seidel Iteration scheme for finding the solution of an n×n system of linear equations. When does it fail to determine the solution?
 - ii) Prove that:

$$\Delta^{k} f(x) = \sum_{i=0}^{k} (-1)^{i} {k \choose i} f[x + (k-i)h]$$

where h is the step length and $\Delta^k f(x)$ is the k-th order forward difference operator. (3+1)+4

- e) i) Explain Euler's method for solving first order differential equation with given initial condition.
 - ii) Using fourth order Runge-Kutta method, find y(1.1) and y(1.2) with h=0.1 for the differential equation

$$\frac{dy}{dx} = x^2 + y^2$$
, y(1)=0. 4+4

- 3. Answer any **two** questions: $8 \times 2 = 16$
 - a) i) State two differences between a compiler and an interpreter.
 - ii) Point out the error of the following statements

A+B=B+A and

Force=Mass*Acceleration

Draw a flow chart for finding the value of $\int_a^b f(x)dx$ by trapezoidal rule.

- b) i) Write short notes on:

 Logical IF and Assignment statements.
 - ii) Write a FORTRAN program to compute the sum of the series

$$1+x+\frac{x^2}{|2}+\frac{x^3}{|3}+...+\frac{x^{10}}{|10}$$

for a given value of x. (2+2)+4

- c) i) Write an algorithm to find the solution of f(x)=0 by fixed point iteration method.
 - ii) Write a FORTRAN program to compute the value of $(x^2+1)(x^3+1)^{\frac{1}{3}}$ for x varying from 0 to 20 at steps 2.
